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Rate description of the stick-slip motion in friction force microscopy experiments
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During the stick-slip motion of an atomic force microscope tip contacting with a uniformly moving atomi-
cally clean surface, the force developed in the cantilever spring performs random sawtoothlike oscillations
resulting from the thermally activated transitions of the tip from one surface site to the next. Using escape rate
theory, the probability distribution of forces is calculated numerically to deduce the time-average lateral force
as a function of pulling velocity. A transcendental equation for the average force is proposed and its approxi-
mate solution is obtained. The accuracy of this analytic approximation is demonstrated via comparison with the
numerical results. The analogous force-velocity relations existing in the literature are shown to be the limiting
cases of low and high cantilever spring constants of our analytic approximation.
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I. INTRODUCTION ture dependence of friction force reported[&1, as well as
L _ . _ the randomness of slip events.

Miniaturization of electronic and mechanical devices has e of the most successful approaches to atomic friction
necessitated a deeper understanding of processes occurriigyifered by the generalization of the one-dimensional Tom-
on the atomic scale. The application of an atomic force miingon model to finite temperatures. Denoting the position of
croscopeAFM) [1] to study the friction forces acting in the e cantilever tip ag [see Fig. 18], its potential energy is
nanoworld has given rise to the research direction of friction,itten as a sum of the potential of interaction with the mov-

force micr_oscopy(EFM). Because_of its rele_vange in nano- ing surface and the elastic energy developed in(&mproxi-
technological studies, as well as its theoretical interest, aﬁer'hately) Hookean cantilever spring of stiffness

a pioneering work of Matet al.[2], atomic friction became
the subject of an increasing number of theoretical and experi- U(z,t) = Ug(z+ vt) + %2%/2. (2
mental investigationg3—19.

In a typical FFM experimenfi2], the tip of an AFM can-
tilever is brought in contact with a uniformly moving atomi-

cally clean surface by means of a normal Idag[see Fig. . ) .
1(a)]. The interaction between the tip and surface leads to ttheg pOt?m'fil.U(Z’t)’ ondthe othher hz:lnd, has ;)nrlly alfmlFe
torsional deformation of the cantilever spring. One can dentUmPer of minimaz,(t), due to the influence of the elastic

termine the magpnitude of this deformation by optical meanEnerdylsee inset in Fig. ®]. The stiffnessx describes the
and thus deduce the resulting elastic fof¢8, which, by cumulative effect of elastic deformation of the cantilever

' ’ spring, as well as the tip apex and the substrate in the contact
region[6,11,12,15. The instantaneous time-dependent force

is given by

The surface potentidly(z) is a periodic function of its argu-
ment with amplitudeAU,, periodicitya, and minima located,
without loss of generality, ata, n=0,+1,+2,.... Thecom-

Newton’s third law, equals the instantaneous force of fric-
tion. As a rule, the temporal evolution of the friction force
proceeds in a sawtoothlike pattdisee Fig. 1b) showing the
results of our numgrica_l simqlations; the experimentally ob- £(t) = — sz(t). (3)
served force evolution is simildsee, e.g.[3])]. The central

quantity of interest is the behavior of the time-averaged fricIncluding the thermal effects, the equation of motion of the
tion force cantilever tip is written in the form5,13-15

ML) + 72(t) = = Up(z+ut) — >z + \20KTED),  (4)

t
fe= !m IL dt'f(t') (1) wherem is the relevant effective mass(t) is an unbiased
S-correlated Gaussian noideTl is the thermal energy, angl
is the coefficient of viscosity, describing the interaction with
the microscopic degrees of freedom of the thermal bath.

p . imately | ithmicallv with That no jumps over multiple lattice sites are observed
erage force Increases approximately logarithmicaily wi Ve'experimentally during the stick-slip motion suggests that in-

locity. This finding was interpretef4—10] using modeling, ertia typically plays a minor role in the procelsj, so that
which relies on the assumption that thermal activation play§he dynamics of the cantilever can be regarcied as over-

an important role in atomic friction. A piece of direct experi- damped(see Ref[15] for a theoretical justification of the
mental evidence supporting this assumption is the temper%’verdamped limit However, even in the limim— 0, the
analysis of the Langevin equati@4) is difficult without fur-
ther approximations. A particularly successful approach is
*Electronic address: mykhaylo@physik.uni-bielefeld.de possible when the dynamics of the system possesses two

as a function of the pulling velocity.
It has been experimentally establisHdd-10] that the av-
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Uz 1 elastic force reaches some critical value at which this barrier
disappears, the tip jumps to the lower minimum as a result of
thermal activation. Then, the process repeats itself; hence,
the resulting motion of the cantilever is termed the stick-slip
motion.

Time-scale separation, which is a necessary condition for
a rate description to apply, occurs when the relevant barrier
heights are much greater than thermal endc@y21]. This
imposes certain restrictions on the system studied. In particu-
lar, it implies that the cantilever stiffnessmust not exceed
some value, at which the potenti@) becomes monostable.
This upper value can be estimafe®] as a second derivative
of the surface potential at one of its minima, resulting in the
condition

z

x < Uj(na). (6)

For realistic parameter valu¢see caption to Fig.(b)], this
implies that the rate description is valid wher<20 N/m.
Furthermore, pulling must proceed sufficiently slowly to al-
low the transitions to occur before the respective time scales
become comparable. Both conditions are well satisfied for
most of the so-far reported experimental studiés§|, in
which the stick-slip motion is observed, whereas violation of
these conditions leads to the onset of the opposite regime of
steady sliding[3,16], whose consideration is beyond the
038 scope of the present work.
(b) £ [msec] Introducing the time-dependent rateg(t) = w(f,(t)) of
transitions from thenth potential well to then+1)st one in

FIG. 1. (8 Schematic illustration of an FFM experiment. The the presence of the elastic for¢® and neglecting the expo-
inset depicts the instantaneous poten@al in which the cantilever  nentially disadvantaged transitions in the direction opposite
tip finds itself at a given instant of tinte (b) A typical example of g the elastic force, the above introduced probability of oc-

the temporal evolution of the elastic for€®) in the stick-slip re- cupation of thenth potential well,p,(t), obeys the following
gime obtained from simulations of the Langevin equatiénin the rate equation:

overdampedm— 0) limit. The lattice potential is given by E@29)

J @ |aN]

fL,n+1

R
£l

with parametersAUy=250 pN nm anda=0.52 nm. Cantilever Pn(t) = = o(f(1))pn(t) + @(fro1 (1) pr-q(t). (7)
spring constantc=0.5 N/m [8], thermal energykT=4.04 pN nm ] o )
(room temperatuie and the viscosityy is 1 pN msec/nnj13,15. In this work, we solve the rate equati¢n) in the long-time

limit to deduce the probability distribution of lateral forces,

substantially different time scales, the shorter one characte (—)?éceh(l\;vzssg?jﬁg?oenng%/ ﬁﬁn toveelzt(':ri?at?:l}?tﬁetr'mg;gv\?vfged
izing the equilibration of the tip coordinate around each pufiing Y. — '

minimum z,(t) of the potential(2) and the longer one de- deduce an approximagnalyticrelation betweer andv. We
scribing the thermally activated rare transitions betweerflémonstrate the high accuracy of this relation by comparison
these minima. Then, it is possible to replace the dynamics off its predictions with the results obtained numerically from
the tip coordinatex(t) with that of the probabilitieg,(t) to  the rate equatioii7). Finally, we discuss the relation of our
find the cantilever tip in theith well—i.e., anywhere be- result to the analogous expressions existing in the literature,
tween the two maxima to the left and to the right of it~ @S well as its implications in the analysis of experimental
minimum z,(t) of the total potentiall(z,t). data.

The qualitative picture of the resulting cantilever motion

z(t) under typical experimental conditiofisee Fig. )] is Il. FORCE PROBABILITY DISTRIBUTION
as follows [7]. As the surface moves with respect to the . . -
cantilever base, the tip remains close to, say, tik As a first step, we introduce the probabiliB(t|t,) of

minimum—i.e., z(t) = z,(t). The corresponding approxima- Staying within thenth potential well up to the moment of
tion for the elastic forc&3) exerted by the cantilever spring, timet, provided that we know with certainty that the tip was
in this well at the initial timet,—i.e., P,(t_|t,)=1; this
f(t) == — %z, (1), (5  means that no transitions from ttie—1)st well to thenth
one occur at>t,. The time evolution ofP,(t|t,) for t=t, is
constantly increases in time, leading to a reduction of theyoverned by the rate equation of the fofi#, but without
energy barrier separating the tip from the energetically moré¢he second term on the right-hand side. The solution of this
favorable adjacent minimum of the potential. Before theequation is
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(8)  long-time probability distributiotW(f,) that a given stick
phase of motion begins with the force value in a small inter-

With the help of this function, we rewrite the rate equa-Vval aroundf, [see Fig. 1b)]. Obviously, this distribution is
tion (7) in the equivalent integral form normalized to 1. Therp(f) can be expressed in terms of the

distribution of initial forcesW(f,) as

t To make the numerics more robust, we introduce the
Patlt) =expg — J dt’ w(f,(t)) |.
'}

t
p(t) = f dt P(tt) w(fo-a(t))Pa-a(ty), 9 f
- D(f):f df W(f)P(f[ L), (14)

where we used the initial conditigoy(—e)=0, meaning that N )
in the infinitely remote past the cantilever was infinitely far @S the probability to find the force valiefor the nth poten-
away from thenth potential well. While Eq(9) is suitable tial well is the probablh_ty of surV|vaP(f|f|_)_up to this force
for the description of transient processes, we are interested Averaged over all starting forcés Comparison of Eq14)
the long-time limit, when these processes have decayed cord"d (13) leads to the following integral equation fo(f):
pletely. o(f + xa) [T

Based on the linear character of the experimentally ob- W(f) = —J df W(f ) P(f + xalf).  (15)
served time dependence of the lateral fof¢® during the xv -0
stick part of the motior}3,4], as well as on the simulation Further details on the numerical evaluatiorVff) are given

results[see Fig. 1b)], we can make the approximation that in the Appendix.

as long as the tip is confined to one of the potential wells, the Next. we turn to the calculation of the time-averaged
force f,(t) grows linearly in time. In other words, we neglect ! - 9
. . . force (1) from knowledge of the probabilityM(f). If the
the influence of the elastic energy on the position of thecantilever tip is confined to theth potential well, the force
minima in Eq.(2) and approximate,(t) by na—vt in expres- : P np '
. . ) (10) increases from some starting lower valfjg, to some
sion (5) for the elastic force: :

upper valuef,, ,, where the tip makes a transition to the next

z,() =na-ot, f.(t) = x(vt-na). (10) well. This transition is accompanied by an instantandous
the experimental time-scalalrop of force by the amount
In view of the time periodicity of the potential2)—  [see Eq(10) and Fig. 1b)]
namely, U(z,t)=U(z,t+a/v)—the long-time limit of the
probabilities of occupying thén—1)st and thenth potential fun—fLn=2a. (16)

wells, as well as the elastic forces, are related as Defining the average initial force as f,

Prot(t) = Pt +alv),  foog(t) =f(t+alv). (12) =!imNHo?(llN)E_,’}LlfL,nE_fdff\/\/(f), we consider the stic!(-
slip motion during the time intervdl when the cantilever tip
Furthermore, by making the change of variables according teisits about|vt/al potential wells(---] denotes the integer
Eqg. (10, we go from the probabilityP,(t|t,) in the time  parD. Let At,=(fy,—f_.)/(xv) be the time spent in theth
domain to the probability>(f|f,) of staying within the same well. Then the time-averaged for¢#) is
potential well up to the force valueprovided that the initial

lvt/al vt/al
lower force value at=t, wasf: T lim lvza fun+ fL'”At _im 1 vza o 0= fn
1 f t—o0 t n=1 2 n t—oo %Ut n=1 2
P(flfu = exp(— %_vaLdf off )>' (12 The limit will not change if we replacé_, by f|_ .., in the

sum. Making this replacement and using ELf), we obtain
Using Egs.(11) and (10), we obtain from Eq.(9) the the following approximation for the time-average elastic
following equation for the probability of realization of a fyrce f from Eq. (1):
given force valuef after the decay of transient processes:

— — xa ” a
1 (f =f + = Ef dffLW(E) + = (17)
p(f) = —f df' P(f|f)e(f’ + xa)p(f' + xa), (13) 2 J. 2
20 J o
where the now superfluous indexhas been omitted, as the lIl. FEORCE-VELOCITY RELATION

force probability distribution is the same in each well.

This integral equation can be used to determine the force While the relation(17) between the time-averaged force
probability distributionp(f) iteratively. For stability of the and the first moment of the distribution(f) is simple, the
numerical implementation, it is desirable to normalize theiterative determination of the latter distribution according to
distribution to one at each iteration step. Howeyéf) is not ~ EQ. (15) is only possible by means of a time-consuming nu-
normalized in the usual sense. Rather, at each moment #ferical procedure. Therefore, our next goal is to obtain an
time the tip occupies one of the potential wel®, implying  approximate analytic relation between the average fdrce
>.pn(t)=1, or, going fromt to f according to Eq.(10),  and velocityv.

Sap(f+nxa)=1. To this end, we note that E¢1l5) can be rewritten as
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g (= the distributionW(f,) is significantly different from zero. To
W(F) = W(f + »a) - EJ df P(f + xal f)W(FL), see that this condition is indeed reasonably satisfied, let us
_°° consider two cases of high and low
(18) (i) At high cantilever stiffnesses, the probability of staying

. . o within the same wel[12) is close to 1 in a rather extended
as can be verified by taking the derivative in the last termgs,ce interval above, [because of a large factor in the

Multiplication of both sides of this equation by some func- yenominator of the expression in the exponent in @A)].

tion G(f) and integration yield This means that the statistics of jump events, and hence the
- - average force at the moment of transition, is practically in-
j dfG(F)W(F) :f dfG(f — xa)W(f) dependent.of the initial forc(_a_ Cc.)rr_e.spondinglly, the aver-
o o age force increment for a fixed initial force indeed be-

haves linearly withf,—i.e., asAF(f)=f,~f_ at high x,

ee] f
+f dfG'(f - %a)f df P(fIfOW(f),  where the average upper forég is practically independent
‘°° ‘°° of f,.
(19 (ii) As a result of a transition from one well to the next,
o ) the force experiences an abrupt drop by the amowmt
where we evaluated the last summand using integration byhjch, therefore, can be taken as a measure of magnitude of
parts with subsequent change of variables of integration frofforce fluctuations during the stick-slip motion. The width of
ftoftxa . _ _the distributionW(f,) is therefore also small at sma#, so
Itis possible, in principle, to use this equation as a basight the deviations of the functichF(f,) from linearity can
of an alternative numerical scheme for calculation of the,, neglected within the relevant force interval.
probability distribution W(f). Namely, one can start with Since the ansait20) can be applied in the E¢21) at low
some concrete functional fori(f;ay,ay, ... .ak) of this  5n4 highy, it can reasonably be expected that the error in-
distribution involving unknown parametera;,a,, ....8  troduced by this approximation is also not too large for in-
which describe, e.g., the position of the peakViff), the  termediate stiffnesses of the cantilever. With the help of this
width of this distribution, its asymmetry, etc. In order to find ansatz, Eq.(21) results in the following implicit force-
these parameters, one can evaluate both sides of 1. yelocity relation[17]:
using the trial ansat¥\(f;ay,...,a) and imposing the re- . L
quirement that this equation be satisfied fds(f) 4 b e |
=f,f2,...,fK. As a result of this procedure, E{L9) trans- ff_%a,zdf exp( v ff_xa,zdf olf )) =aa. (22
forms intoK coupled nonlinear equations for the parameters . . ) )
a,, which are to be found numerically. For an analytic solution of this equation, we need to fur-
The advantage of this approach is that it allows one tdher approximate the transition rate so as to be able to evalu-
deduce an analytic approximation for the distributioff). ~ ate the integral on the left-hand side. We motivate our ap-
However, as will be demonstrated numerically in Sec. 1V, forProximation forw(f) as follows. According to the Kramers’
the accurate determination of the first moment of this distri-theory of thermally activated escafl] [see also Eq(32)
bution, it is sufficient to use the simplest ansatz with onebelow], the force-dependent transition rate essentially be-

parameter: namely, haves as w(f) e VKT where AU(f) is the force-
dependent height of the energy barrier separating the current
W(f;f_L) = &(f —f_u_), f_LEf__ xal?, (20) minimum from the next one. While the rate(f) depends

exponentially strongly on force, the energy bardés(f) is a
where we exploited Eq17) in the last identity. To motivate much weaker function. Indeed, at low forces it behaves as
this ansatz physically, we first write E€L9) with G(f)=f: AU(f)=AU(0)-af/2, as the distance between two adjacent
extrema isa/2, while at larger forces we havAU(f)

« (const—f)*2[13]. Such a functional form suggests an ex-

pansion of thelogarithm of frequency about some force

value f—i.e., to take, to first order,

where we interchanged the order of integration dvandf, . - a(fo)(f-fo) N

It can be showi17] ?hat the inner integre?l on the right-rlw_and olf) = (fo)e™0T0, alf) = o (Ho(f). (23

side of this equation represents the average force increment The next question is how to choose the forfge about

AF(f,) during a given stick phase, provided that the initial which the expansion is performed. To answer this question,

force value wad,. The expression on the right-hand side, let us examine Eq(22) more closely. Depending on the

therefore, is the force increment during the stick phase avenalue of x, the integrand, exp--), may exhibit two kinds of

aged over all initial forces; this quantity equals the forcebehavior:

drop xa during the slip to the next potential well. (i) At high x, there is a rather wide region of forces be-
Employment of the ansat20) is justified if the behavior  tweenf, and f,, where the integrand has the value 1, fol-

of the function AF(f):= 7 dfP(f[f) does not deviate |owed by an abrupt drop to zero in the immediate vicinity of

strongly from linearity in that force interval arourﬁ_g, where  fy. The nature of the approximatig3) is such that if we

xa= foo deW(fL)fwdfP(ﬂfL), (21)
—o f

L
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choosefy to lie in the region of the steepest descent of the
integrand, we will correctly reproduce its behavior not only
in this region, but also outside of it, where the integrand is
very close to Oat higher forcegor 1 (at lower forces

(i) At low x, the integrand drops to zero in a rather nar-

row interval abovef, =f-xa/2. Therefore, we expect that
the integral will not be very sensitive to the choice fgf
provided thatf, belongs to that narrow region where the
integrand is notably different from zero. This region extends

from f_ to a value slightly higher than the average force at

the moment of transitionf,,=f+xa/2 [cf. Eq. (16)]. 0.0 L . L . L . L
Thus, the choice of the expansion point in E28), which x
applies to both cases equally well, is simply

g

o FIG. 2. The functionQ(x) appearing in the force-velocity rela-
fo=fy="f+xa/2. (24) tion (26), as calculated numerically from E¢7) (solid line) and
L the approximatior(28) (dashed ling
Making a change of variables accordingtee® V(U we

have, from Eqs(22)~(24), of the tip coordinate are governed by the overdampred

_ — _ w(feah=a —0) Langevin equation(4) with kT=4.04 pN nm (room

a(fy)xa=eWE(g(fy)), o(f):=————. (25  temperaturg =1 pN msec/nn{13,15, and » varying be-
xoaf) tween 0.01 and 1 N/rf8,15].

Here E;(g)=/7dxe%/x is the exponential integral, which To calculate the force-dependent transition ras€f, we
can be evaluated numerically using a standard algorithrfirst note that the position of the local potential minimum
[22]. corresponding to the force valdds given by[cf. Eq. (5)]

It follows from Eq. (25) that the sought relation between 2= —flx (30)

force and velocity has the form
_ (we use the sign convention, in whidh>0 and z,,;,<0).
o() = aw(f + xa/Z)Q( w'(_f+ xal2) %a), 26 The condition that one of the minima of the potentia)
olf + xal2) coincides W|tr_1 F/5 is met not at arbitrary, but at spec_lflc
moments of timef;, which can be found from the require-
where the functiorQ(x) is defined implicitly by the relation ment that the derivative of the total potenti@) and(29) at

z=—f/» and t=t; be zero, i.e., from the equatiody(vt;

- -1
E1([(x€Q(x) ] He*I " = . (27)  —(f/x)=f, leading to
Equation(26) is the main result of the present work. 1l a af
From the asymptotic properties of the exponential integral t=—| —+ o si ‘1( AU ) +na (31
vl % T AUy

[23] it can be inferred tha®(x) is a monotonically decreas-
ing function with Q(0)=1 andQ(x) ~e”/x at x—=, where  Here, an integen marking the minimum can be arbitrary in
v=0.577 215664 9... is Euler's constant. We further ap-view of the periodicity of the potentidly(2). It is a well-

proximate this function by known result from Kramers’ theor§21] that the transition
— rate is given b
Q) ~ 111 +(e )2, (28) given by
. . N : o(f) = wy(f)e 2VOAT,
The high accuracy of this approximation is obvious from

Fig. 2.

1 My "
wo(f) = o VU (Zinin t) U (Ziaw )] (32
IV. NUMERICAL RESULTS U

- . h £ th . wherez,,,x denotes the position of the barrier separating the
It is instructive to test the accuracy of the approximate, rant minimurmz,,;, from the next one and

expression(26) by comparing it with the results obtained
numerically from the force probability distribution, Eq45) AU(F) = U(Znaxts) = U(Zmin tr) (33)
and (17), for a model system with realistic parameters. To.
this end, we assume that the surface contribution to the pd
tential (2) can be described by a trigopnometric function

s its height.
It thus remains to determine the position of the maximum,
Znax Although it can be done numerically, such an approach
AU, 2mz is rather time consuming, because one needs to search for

Uo(2) = - o COS?' (290 2., at each sampling point of numerical integration of Eq.

(15) or (A2). Therefore, an analytic approximation g, is

with the amplitude AU;=250 pN nm and periodicitya  desirable. Fortunately, the accuracy of the Kramers’ (38
=0.52 nm[8]. Furthermore, we assume that the fluctuationss most crucially influenced by the accuracy of determination
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of the barrier height33) and to a much lesser degree by the 13 g
accuracy of determination of its position: since the first de- F
rivative of the potential vanishes at its extrema, a first-order 12F
error inz,,,, Will result in only a second-order error ikU(f) s
and hence ofv(f).

To analytically approximate,,,, We focus on that half-
period of the substrate potentidy(2) in Eg. (29) to which 3
the extremazyi, Zmax belong. Within this half-period, the 10}
surface potential can be approximated as E

11¢

JnN]

~ 0.9 £

Uo(2) = a(z-29) - Bz~ 293, (34) 3
wherezy (zin<Zo<Zngay0 is the inflection point. The param- 0.8 . s ! s
etersa and B are chosen so as to correctly reproduce the 0.001 0.01 0.1 1 10
separatiora/2 between the extrema &fy(z) and the barrier v [pm/sec]

heightAU,. Imposing these two requirements yields FIG. 3. Time-averaged lateral force vs pulling velocity, as ob-

a=3AUya, B=48AUya°. (35) tained from the relation26) and the approximatior{28) (solid
lines) and numerical solution of the integral equatid®) and Eq.
Including the elastic energy, we obtain an approximation for17) (circles. All parameters are the same as in Fig. 1, except for
the total potential(2) in the relevant half-period: namely, the cantilever spring constants, which are0.01, 0.1, 0.5, and

D(z):Do(z)+x22/2. It is easily verified by differentiation 1 N/m (from top to botton. Numerical determination of the func-

that the distance between the two extremEJ(ﬁ) is given by tion Q(x) from Eq. (27).'ns.tead of Eq(28) yields results indistin-
guishable from the solid lines.

L, g | etz [ act . _ _ _
Zmax™ Zmin— 48 ) =~ 482 B’ results obtained from numerical solution of E@) (circles.

The discrepancy between the two sets of data is only a frac-
(36) tion of a percent. Additionally, we note a good qualitative
where we further approximatezy by z,,,=—f/x. This re- agreement with the experimental results reportefBinal-
placement does not introduce much of an error provided thdf'ough we have not attempted to perform a quantitative fit-
(2o~ i) < @, Which is consistent with the conditic) of ~ ting. This agreement worsens at relatively high velocities,
validity of the rate description. Equatid36) gives us the where the experimental curves [@] exhibit plateaus. These

desired approximation for the position of the relevant maxi-Plateaus, however, appear at forces dangerously cloée to
mum of the potential(z,t). where the conditior{37) of validity of the rate theory does

t not hold. Their nature is discussed in the recent was.

Having determined,,,, we calculate the force-dependen
barrier height according to E¢B3). As our additional analy-
sis based on the numerical determinatiorggf, has shown,
our approximation has a very good accuracy of Kramers' rate
(32) of about 0.1%. A description of FFM in terms of occupation probabilities

It should be noted that there exists a force vafueat  and transition rates has been introduced some time ago
which the potential barrier vanisheAU(f.)=0. This value [4,8-10,13,1#% The expressions relating pulling velocity and
depends on the concrete model potential; for the one givefriction force used in Refd.9,10] and Refs[4,8,13,14 can
by Eq.(29) we havef.=mAUy/a [cf. Eq.(31)]. As stated in  be obtained from our relatiof26) as limiting cases of small
the Introduction, the rate description applies when the reland large cantilever spring constamisrespectively.
evant barrier height is much greater than the thermal energy. When the cantilever has a very low stiffness, we have,
This means that the average upper force at the moment dfom Eq. (26),
transition to the next minimum must satisfy the inequality _ _

_ lim v(f) =aw(f). (38)
AU(f + xa/2) > KT. (37 #=0

Typically, the barrier height must be greater than the thermal NiS expression has been used earlier, e.g., by Heslat
energy at least by about a factor of 5. For the model param[—g] and Bouhacinzt al. [10]. It has a transparent physical

eters chosen below E@29), this condition holds for such meaning. As a result of a transition from one minimum to the
'y next, the force experiences a practically instantandouns

V. RELATION TO THE EXISTING APPROACHES

orons e peror oy . oo s oo e permenal e scalarop by the amouria, whih
this inequalit;) Y ge sp Ya measure of the magnitude of force fluctuations during the

Presented in Fig. 3 are the numerical results obtained fo?t":k'SIIIO motion. If it is much smaller than the average force

four values of cantilever spring constant=0.01,0.1,0.5, [tself—i.e., x<f/a—then the transitions occur at approxi-
and 1 N/m. It is obvious from Fig. 3 that our approximate mately the same frequenay(f); after each such transition,
relation (26) (solid lineg is in excellent agreement with the the cantilever moves by the distanae
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In the limit of large s [but not large enough to render the mined experimentally. To evaluate the effect of this assump-
combined potential2) lose its multistable character, so that tion on fitting the experimental results j4,8], we note the
the condition(6) still holds] we have, from Egs(26) and  following. The attempt frequency, in Kramers’ rate(32) is
(28), assumed to be a force-independent constant in these works.
With this additional assumption it is obvious that in order to
_ recover the fitting formulas used [4,8] from Eq.(39), one

v(f) = T e za/2)ey’ large . (39) only needs to absorb the factet into w,. Therefore, the
@ attempt frequencyw, is overestimated in Refg4,8] by a

It can be verified that the force-velocity relations used predarge factore?~1.78.
viously in Refs.[4,8,13,14 have the same structufeote,
however, that these works either present the force-velocity
relation by expressing the average lateral force as a function
of velocity [4,13,14 or as an equation where both force and Based on escape rate theory, we have deduced an approxi-
velocity appear in both sidd8]). In particular, Eq(39), as  mate relation26) between pulling velocity and the resulting
well as the analogous relations j#,8,13,14, predicts an time-averaged friction force acting during the stick-slip mo-
unphysical divergence of velocity in the soft-cantileer tion of an AFM cantilever. The high accuracy of this relation
—0) limit. The difference between the expressions given inwas verified by comparison with the results obtained from
these works stems from different assumptions about ththe numerically calculated force probability distribution. The
functional form ofw(f). By adopting these assumptions, one analogous relations existing in the literature were shown to
can reduce our equatidi39) to the respective formulas ob- be the low- and high-stiffness limits of our result.

—  WA(f+xal2)

VI. CONCLUSIONS

tained in these works. However, our relati¢@9) is more One of the most drastic simplifications made in this work
general, because, in contrast to these works, it does not relg that the motion of the cantilever is essentially one-
on any specific functional form of the rate(f). dimensional, whereas in reality the cantilever tip also moves

It is possible within the present approach to find the padin the direction perpendicular to that of pulling. An extension
rameter range in which the high-approximation39) is ap-  of the Tomlinson model to the more general two-dimensional
plicable. It follows from Eqs(26) and(28) that for this to be  case is treated numerically [a8-20. The qualitative differ-
the case, the argument of the functi@tx) must be much ence from the one-dimensional case studied here is that the

greater than 1: that is, cantilever tip has several choices of the next minima to jump
L into from the current minimum of the potential. It follows

' (f + xal2) from Langer’s generalization of Kramers’ theory to many
— x>l (40 dimensiong21] that the tip will follow the path of the “least
o(f +xa/2) resistance” with the highest probability; i.e., it will jump to

In the lowest nonvanishing order, the Kramers’ ré88) can that minimum which is separated by the smallest barrier.
be approximated as(f)~w(0)e?”*T as the distance be- Thus, the motion of the tip will no longer proceed along a

tween the minimum and maximum is abai2. The condi-  Straight line, but rather follow a zigzag path. Although this is
tion of validity of the highx limit (39) is thus seen to be Still a one-dimensional manifold, the rate of transitions from

one node to the next will vary, whereas it is the same in the

xa?l2 > KT. (41)  one-dimensional case considered here. However, the model
treated in the present work still applies to the two-
dimensional case when pulling proceeds along such a crys-
tallographic direction that the internode transition rates re-

ain the same along the path; e.g., for a square underlying
attice, these are théd1) and(11) directions. In this sense,
the one-dimensional model studied in this work is a special
case of the more general two-dimensional model, whose de-
velopment is an interesting subject for future research.

Keeping in mind that at room temperat&=4 pN nm and
a~0.5 nm, we conclude that E¢B9) is a good approxima-
tion for »>0.03 N/m. The larges expression39) in vari-
ous forms has been used for analysis of experimental data
[4,8]. Yet its applicability limits have not been discussed so
far in the literature, and therefore the reqdll) is of imme-
diate relevance to experimental nanofriction.

A further difference between our expressi@®) and the
respective formulas if4,8,13,14, which is of still greater
importance for the analysis of experimental data, is that the ACKNOWLEDGMENTS
factore” is absent in these works. By analyzing the problem

of escape from a metastable potential well under the action Ve aré grateful to the Alexander von Humboldt Founda-
of a steadily increasing force, it can be sho@4,25 that tion, the Deutsche Forschungsgemeinsci@afant Nos. SFB

this difference stems from the fact that we use average 013 and RE 1344/3j] and the ESF-program STOCHDYN

s . forfi ial f thi k.
force at the transitionfy=f+xa/2, as an argument, while or financial support of this wor
the authors of4,8,13,14 work with the most probabléorce
f, found from the maximization of the transition probability APPENDIX

=(algt)P(f[f). In Refs.[4,8], the implicit assumption is  Rejation (15) is not very efficient for numerical imple-
made that the most probable force at the transitign,is  mentation, because the integral kernel on the right-hand side
practically the same as the average fofgewhich is deter- depends on two argumentsand f,. This means that foN
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To cure this difficulty, we present the distribution function of df w(fL + xa)P(f_+ »alf )g(f,).

the starting forces in the form
W(F) = w(f + xa) P(f + xal- =)g(f), (A1)

sampling pointsN? evaluations of the kernel are necessary. 0 1 J“%ﬁ
g(f)=—
XU

—00

(A2)

with the unknown functiorg(f) satisfying the following in-
tegral equation, in which the kernel depends on only ondt was this equation that we solved iteratively with the inte-
argumentf : gral evaluated numerically at each iteration step.
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