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During the stick-slip motion of an atomic force microscope tip contacting with a uniformly moving atomi-
cally clean surface, the force developed in the cantilever spring performs random sawtoothlike oscillations
resulting from the thermally activated transitions of the tip from one surface site to the next. Using escape rate
theory, the probability distribution of forces is calculated numerically to deduce the time-average lateral force
as a function of pulling velocity. A transcendental equation for the average force is proposed and its approxi-
mate solution is obtained. The accuracy of this analytic approximation is demonstrated via comparison with the
numerical results. The analogous force-velocity relations existing in the literature are shown to be the limiting
cases of low and high cantilever spring constants of our analytic approximation.
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I. INTRODUCTION

Miniaturization of electronic and mechanical devices has
necessitated a deeper understanding of processes occurring
on the atomic scale. The application of an atomic force mi-
croscopesAFMd f1g to study the friction forces acting in the
nanoworld has given rise to the research direction of friction
force microscopysFFMd. Because of its relevance in nano-
technological studies, as well as its theoretical interest, after
a pioneering work of Mateet al. f2g, atomic friction became
the subject of an increasing number of theoretical and experi-
mental investigationsf3–19g.

In a typical FFM experimentf2g, the tip of an AFM can-
tilever is brought in contact with a uniformly moving atomi-
cally clean surface by means of a normal loadFN fsee Fig.
1sadg. The interaction between the tip and surface leads to the
torsional deformation of the cantilever spring. One can de-
termine the magnitude of this deformation by optical means
and thus deduce the resulting elastic forcefstd, which, by
Newton’s third law, equals the instantaneous force of fric-
tion. As a rule, the temporal evolution of the friction force
proceeds in a sawtoothlike patternfsee Fig. 1sbd showing the
results of our numerical simulations; the experimentally ob-
served force evolution is similarssee, e.g.,f3gdg. The central
quantity of interest is the behavior of the time-averaged fric-
tion force

f̄ ª lim
t→`

1

t
E

0

t

dt8fst8d s1d

as a function of the pulling velocityv.
It has been experimentally establishedf4–10g that the av-

erage force increases approximately logarithmically with ve-
locity. This finding was interpretedf4–10g using modeling,
which relies on the assumption that thermal activation plays
an important role in atomic friction. A piece of direct experi-
mental evidence supporting this assumption is the tempera-

ture dependence of friction force reported inf5g, as well as
the randomness of slip events.

One of the most successful approaches to atomic friction
is offered by the generalization of the one-dimensional Tom-
linson model to finite temperatures. Denoting the position of
the cantilever tip asz fsee Fig. 1sadg, its potential energy is
written as a sum of the potential of interaction with the mov-
ing surface and the elastic energy developed in thesapproxi-
matelyd Hookean cantilever spring of stiffnessû:

Usz,td = U0sz+ vtd + ûz2/2. s2d

The surface potentialU0szd is a periodic function of its argu-
ment with amplitudeDU0, periodicitya, and minima located,
without loss of generality, atna, n=0, ±1, ±2, . . .. Thecom-
bined potentialUsz,td, on the other hand, has only a finite
number of minima,znstd, due to the influence of the elastic
energyfsee inset in Fig. 1sadg. The stiffnessû describes the
cumulative effect of elastic deformation of the cantilever
spring, as well as the tip apex and the substrate in the contact
region f6,11,12,15g. The instantaneous time-dependent force
is given by

fstd = − ûzstd. s3d

Including the thermal effects, the equation of motion of the
cantilever tip is written in the formf5,13–15g

mz̈std + hżstd = − U08sz+ vtd − ûz+ Î2hkTjstd, s4d

wherem is the relevant effective mass,jstd is an unbiased
d-correlated Gaussian noise,kT is the thermal energy, andh
is the coefficient of viscosity, describing the interaction with
the microscopic degrees of freedom of the thermal bath.

That no jumps over multiple lattice sites are observed
experimentally during the stick-slip motion suggests that in-
ertia typically plays a minor role in the processf3g, so that
the dynamics of the cantilever can be regarded as over-
dampedssee Ref.f15g for a theoretical justification of the
overdamped limitd. However, even in the limitm→0, the
analysis of the Langevin equations4d is difficult without fur-
ther approximations. A particularly successful approach is
possible when the dynamics of the system possesses two*Electronic address: mykhaylo@physik.uni-bielefeld.de
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substantially different time scales, the shorter one character-
izing the equilibration of the tip coordinate around each
minimum znstd of the potentials2d and the longer one de-
scribing the thermally activated rare transitions between
these minima. Then, it is possible to replace the dynamics of
the tip coordinatezstd with that of the probabilitiespnstd to
find the cantilever tip in thenth well—i.e., anywhere be-
tween the two maxima to the left and to the right of thenth
minimum znstd of the total potentialUsz,td.

The qualitative picture of the resulting cantilever motion
zstd under typical experimental conditionsfsee Fig. 1sbdg is
as follows f7g. As the surface moves with respect to the
cantilever base, the tip remains close to, say, thenth
minimum—i.e., zstd.znstd. The corresponding approxima-
tion for the elastic forces3d exerted by the cantilever spring,

fnstd ª − ûznstd, s5d

constantly increases in time, leading to a reduction of the
energy barrier separating the tip from the energetically more
favorable adjacent minimum of the potential. Before the

elastic force reaches some critical value at which this barrier
disappears, the tip jumps to the lower minimum as a result of
thermal activation. Then, the process repeats itself; hence,
the resulting motion of the cantilever is termed the stick-slip
motion.

Time-scale separation, which is a necessary condition for
a rate description to apply, occurs when the relevant barrier
heights are much greater than thermal energykT f21g. This
imposes certain restrictions on the system studied. In particu-
lar, it implies that the cantilever stiffnessû must not exceed
some value, at which the potentials2d becomes monostable.
This upper value can be estimatedf3g as a second derivative
of the surface potential at one of its minima, resulting in the
condition

û ! U09snad. s6d

For realistic parameter valuesfsee caption to Fig. 1sbdg, this
implies that the rate description is valid whenû!20 N/m.
Furthermore, pulling must proceed sufficiently slowly to al-
low the transitions to occur before the respective time scales
become comparable. Both conditions are well satisfied for
most of the so-far reported experimental studiesf4–8g, in
which the stick-slip motion is observed, whereas violation of
these conditions leads to the onset of the opposite regime of
steady slidingf3,16g, whose consideration is beyond the
scope of the present work.

Introducing the time-dependent ratesvnstd;v(fnstd) of
transitions from thenth potential well to thesn+1dst one in
the presence of the elastic forces5d and neglecting the expo-
nentially disadvantaged transitions in the direction opposite
to the elastic force, the above introduced probability of oc-
cupation of thenth potential well,pnstd, obeys the following
rate equation:

ṗnstd = − v„fnstd…pnstd + v„fn−1std…pn−1std. s7d

In this work, we solve the rate equations7d in the long-time
limit to deduce the probability distribution of lateral forces,
which we subsequently use to estimate the time-averaged
forces1d as a function of pulling velocityv. Furthermore, we

deduce an approximateanalyticrelation betweenf̄ andv. We
demonstrate the high accuracy of this relation by comparison
of its predictions with the results obtained numerically from
the rate equations7d. Finally, we discuss the relation of our
result to the analogous expressions existing in the literature,
as well as its implications in the analysis of experimental
data.

II. FORCE PROBABILITY DISTRIBUTION

As a first step, we introduce the probabilityPnst u tLd of
staying within thenth potential well up to the moment of
time t, provided that we know with certainty that the tip was
in this well at the initial time tL—i.e., PnstL u tLd=1; this
means that no transitions from thesn−1dst well to thenth
one occur att. tL. The time evolution ofPnst u tLd for tù tL is
governed by the rate equation of the forms7d, but without
the second term on the right-hand side. The solution of this
equation is

FIG. 1. sad Schematic illustration of an FFM experiment. The
inset depicts the instantaneous potentials2d, in which the cantilever
tip finds itself at a given instant of timet. sbd A typical example of
the temporal evolution of the elastic forces3d in the stick-slip re-
gime obtained from simulations of the Langevin equations4d in the
overdampedsm→0d limit. The lattice potential is given by Eq.s29d
with parametersDU0=250 pN nm anda=0.52 nm. Cantilever
spring constantû=0.5 N/m f8g, thermal energykT=4.04 pN nm
sroom temperatured, and the viscosityh is 1 pN msec/nmf13,15g.
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PnstutLd = expS−E
tL

t

dt8v„fnst8d…D . s8d

With the help of this function, we rewrite the rate equa-
tion s7d in the equivalent integral form

pnstd =E
−`

t

dtLPnstutLdv„fn−1stLd…pn−1stLd, s9d

where we used the initial conditionpns−`d=0, meaning that
in the infinitely remote past the cantilever was infinitely far
away from thenth potential well. While Eq.s9d is suitable
for the description of transient processes, we are interested in
the long-time limit, when these processes have decayed com-
pletely.

Based on the linear character of the experimentally ob-
served time dependence of the lateral forcefstd during the
stick part of the motionf3,4g, as well as on the simulation
resultsfsee Fig. 1sbdg, we can make the approximation that
as long as the tip is confined to one of the potential wells, the
force fnstd grows linearly in time. In other words, we neglect
the influence of the elastic energy on the position of the
minima in Eq.s2d and approximateznstd by na−vt in expres-
sion s5d for the elastic force:

znstd . na− vt, fnstd . ûsvt − nad. s10d

In view of the time periodicity of the potentials2d—
namely, Usz,td=Usz,t+a/vd—the long-time limit of the
probabilities of occupying thesn−1dst and thenth potential
wells, as well as the elastic forces, are related as

pn−1std = pnst + a/vd, fn−1std = fnst + a/vd. s11d

Furthermore, by making the change of variables according to
Eq. s10d, we go from the probabilityPnst u tLd in the time
domain to the probabilityPsf u fLd of staying within the same
potential well up to the force valuef provided that the initial
lower force value att= tL was fL:

Psf ufLd = expS−
1

ûv
E

fL

f

df8vsf8dD . s12d

Using Eqs.s11d and s10d, we obtain from Eq.s9d the
following equation for the probability of realization of a
given force valuef after the decay of transient processes:

psfd =
1

ûv
E

−`

f

df8Psf uf8dvsf8 + ûadpsf8 + ûad, s13d

where the now superfluous indexn has been omitted, as the
force probability distribution is the same in each well.

This integral equation can be used to determine the force
probability distributionpsfd iteratively. For stability of the
numerical implementation, it is desirable to normalize the
distribution to one at each iteration step. However,psfd is not
normalized in the usual sense. Rather, at each moment of
time the tip occupies one of the potential wellss2d, implying
onpnstd=1, or, going from t to f according to Eq.s10d,
onpsf +nûad=1.

To make the numerics more robust, we introduce the
long-time probability distributionWsfLd that a given stick
phase of motion begins with the force value in a small inter-
val aroundfL fsee Fig. 1sbdg. Obviously, this distribution is
normalized to 1. Then,psfd can be expressed in terms of the
distribution of initial forcesWsfLd as

psfd =E
−`

f

dfLWsfLdPsf ufLd, s14d

as the probability to find the force valuef for the nth poten-
tial well is the probability of survivalPsf u fLd up to this force
averaged over all starting forcesfL. Comparison of Eqs.s14d
and s13d leads to the following integral equation forWsfd:

Wsfd =
vsf + ûad

ûv
E

−`

f+ûa

dfLWsfLdPsf + ûaufLd. s15d

Further details on the numerical evaluation ofWsfd are given
in the Appendix.

Next, we turn to the calculation of the time-averaged
force s1d from knowledge of the probabilityWsfd. If the
cantilever tip is confined to thenth potential well, the force
s10d increases from some starting lower valuefL,n to some
upper valuefU,n, where the tip makes a transition to the next
well. This transition is accompanied by an instantaneousson
the experimental time-scaled drop of force by the amount
fsee Eq.s10d and Fig. 1sbdg

fU,n − fL,n+1 = ûa. s16d

Defining the average initial force as f̄ L
=limN→`s1/Ndon=1

N fL,n;edf fWsfd, we consider the stick-
slip motion during the time intervalt, when the cantilever tip
visits aboutbvt /ac potential wellssb¯c denotes the integer
partd. Let Dtn=sfU,n− fL,nd / sûvd be the time spent in thenth
well. Then the time-averaged forces1d is

f̄ = lim
t→`

1

t o
n=1

bvt/ac
fU,n + fL,n

2
Dtn = lim

t→`

1

ûvt o
n=1

bvt/ac
fU,n
2 − fL,n

2

2
.

The limit will not change if we replacefL,n by fL,n+1 in the
sum. Making this replacement and using Eq.s16d, we obtain
the following approximation for the time-average elastic

force f̄ from Eq. s1d:

f̄ = f̄ L +
ûa

2
; E

−`

`

dfLfLWsfLd +
ûa

2
. s17d

III. FORCE-VELOCITY RELATION

While the relations17d between the time-averaged force
and the first moment of the distributionWsfd is simple, the
iterative determination of the latter distribution according to
Eq. s15d is only possible by means of a time-consuming nu-
merical procedure. Therefore, our next goal is to obtain an

approximate analytic relation between the average forcef̄
and velocityv.

To this end, we note that Eq.s15d can be rewritten as
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Wsfd = Wsf + ûad −
]

]f
E

−`

f+ûa

dfLPsf + ûaufLdWsfLd,

s18d

as can be verified by taking the derivative in the last term.
Multiplication of both sides of this equation by some func-
tion Gsfd and integration yield

E
−`

`

dfGsfdWsfd =E
−`

`

dfGsf − ûadWsfd

+E
−`

`

dfG8sf − ûadE
−`

f

dfLPsf ufLdWsfLd,

s19d

where we evaluated the last summand using integration by
parts with subsequent change of variables of integration from
f to f +ûa.

It is possible, in principle, to use this equation as a basis
of an alternative numerical scheme for calculation of the
probability distributionWsfd. Namely, one can start with
some concrete functional formWsf ;a1,a2, . . . ,aKd of this
distribution involving unknown parametersa1,a2, . . . ,aK
which describe, e.g., the position of the peak ofWsfd, the
width of this distribution, its asymmetry, etc. In order to find
these parameters, one can evaluate both sides of Eq.s19d
using the trial ansatzWsf ;a1, . . . ,aKd and imposing the re-
quirement that this equation be satisfied forGsfd
= f , f2, . . . ,fK. As a result of this procedure, Eq.s19d trans-
forms intoK coupled nonlinear equations for the parameters
ak, which are to be found numerically.

The advantage of this approach is that it allows one to
deduce an analytic approximation for the distributionWsfd.
However, as will be demonstrated numerically in Sec. IV, for
the accurate determination of the first moment of this distri-
bution, it is sufficient to use the simplest ansatz with one
parameter: namely,

Wsf ; f̄ Ld = dsf − f̄ Ld, f̄ L ; f̄ − ûa/2, s20d

where we exploited Eq.s17d in the last identity. To motivate
this ansatz physically, we first write Eq.s19d with Gsfd= f:

ûa =E
−`

`

dfLWsfLdE
fL

`

dfPsf ufLd, s21d

where we interchanged the order of integration overf and fL.
It can be shownf17g that the inner integral on the right-hand
side of this equation represents the average force increment
DFsfLd during a given stick phase, provided that the initial
force value wasfL. The expression on the right-hand side,
therefore, is the force increment during the stick phase aver-
aged over all initial forces; this quantity equals the force
drop ûa during the slip to the next potential well.

Employment of the ansatzs20d is justified if the behavior
of the function DFsfLdªe fL

` dfPsf u fLd does not deviate

strongly from linearity in that force interval aroundf̄ L, where

the distributionWsfLd is significantly different from zero. To
see that this condition is indeed reasonably satisfied, let us
consider two cases of high and lowû.

sid At high cantilever stiffnesses, the probability of staying
within the same wells12d is close to 1 in a rather extended
force interval abovefL fbecause of a large factorû in the
denominator of the expression in the exponent in Eq.s12dg.
This means that the statistics of jump events, and hence the
average force at the moment of transition, is practically in-
dependent of the initial forcefL. Correspondingly, the aver-
age force increment for a fixed initial forcefL indeed be-

haves linearly withfL—i.e., asDFsfLd= f̄U− fL at high û,

where the average upper forcef̄U is practically independent
of fL.

sii d As a result of a transition from one well to the next,
the force experiences an abrupt drop by the amountûa,
which, therefore, can be taken as a measure of magnitude of
force fluctuations during the stick-slip motion. The width of
the distributionWsfLd is therefore also small at smallû, so
that the deviations of the functionDFsfLd from linearity can
be neglected within the relevant force interval.

Since the ansatzs20d can be applied in the Eq.s21d at low
and highû, it can reasonably be expected that the error in-
troduced by this approximation is also not too large for in-
termediate stiffnesses of the cantilever. With the help of this
ansatz, Eq.s21d results in the following implicit force-
velocity relationf17g:

E
f̄−ûa/2

`

df expS−
1

ûv
E

f̄−ûa/2

f

df8vsf8dD = ûa. s22d

For an analytic solution of this equation, we need to fur-
ther approximate the transition rate so as to be able to evalu-
ate the integral on the left-hand side. We motivate our ap-
proximation forvsfd as follows. According to the Kramers’
theory of thermally activated escapef21g fsee also Eq.s32d
belowg, the force-dependent transition rate essentially be-
haves as vsfd~e−DUsfd/kT, where DUsfd is the force-
dependent height of the energy barrier separating the current
minimum from the next one. While the ratevsfd depends
exponentially strongly on force, the energy barrierDUsfd is a
much weaker function. Indeed, at low forces it behaves as
DUsfd<DUs0d−af /2, as the distance between two adjacent
extrema is a/2, while at larger forces we haveDUsfd
~ sconst−fd3/2 f13g. Such a functional form suggests an ex-
pansion of thelogarithm of frequency about some force
value f0—i.e., to take, to first order,

vsfd < vsf0deasf0dsf−f0d, asfd ª v8sfd/vsfd. s23d

The next question is how to choose the forcef0, about
which the expansion is performed. To answer this question,
let us examine Eq.s22d more closely. Depending on the
value ofû, the integrand, exps¯d, may exhibit two kinds of
behavior:

sid At high û, there is a rather wide region of forces be-

tween f̄ L and f̄U, where the integrand has the value 1, fol-
lowed by an abrupt drop to zero in the immediate vicinity of

f̄U. The nature of the approximations23d is such that if we
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choosef0 to lie in the region of the steepest descent of the
integrand, we will correctly reproduce its behavior not only
in this region, but also outside of it, where the integrand is
very close to 0sat higher forcesd or 1 sat lower forcesd.

sii d At low û, the integrand drops to zero in a rather nar-

row interval abovef̄ L= f̄ −ûa/2. Therefore, we expect that
the integral will not be very sensitive to the choice off0,
provided that f0 belongs to that narrow region where the
integrand is notably different from zero. This region extends

from f̄ L to a value slightly higher than the average force at

the moment of transition,f̄U= f̄ +ûa/2 fcf. Eq. s16dg.
Thus, the choice of the expansion point in Eq.s23d, which

applies to both cases equally well, is simply

f0 = f̄U ; f̄ + ûa/2. s24d

Making a change of variables according tox=eas f̄Udsf− f̄Ld, we
have, from Eqs.s22d–s24d,

as f̄Udûa = egs f̄UdE1„gs f̄Ud…, gsfd ª
vsfde−asfdûa

ûvasfd
. s25d

Here E1sgd=e1
`dxe−gx/x is the exponential integral, which

can be evaluated numerically using a standard algorithm
f22g.

It follows from Eq. s25d that the sought relation between
force and velocity has the form

vs f̄d = avs f̄ + ûa/2dQXv8s f̄ + ûa/2d

vs f̄ + ûa/2d
ûaC , s26d

where the functionQsxd is defined implicitly by the relation

E1„fxexQsxdg−1
…efxexQsxdg−1

= x. s27d

Equations26d is the main result of the present work.
From the asymptotic properties of the exponential integral

f23g it can be inferred thatQsxd is a monotonically decreas-
ing function with Qs0d=1 andQsxd,eg /x at x→`, where
g=0.577 215 664 9. . . is Euler’s constant. We further ap-
proximate this function by

Qsxd < 1/Î1 + se−gxd2. s28d

The high accuracy of this approximation is obvious from
Fig. 2.

IV. NUMERICAL RESULTS

It is instructive to test the accuracy of the approximate
expressions26d by comparing it with the results obtained
numerically from the force probability distribution, Eqs.s15d
and s17d, for a model system with realistic parameters. To
this end, we assume that the surface contribution to the po-
tential s2d can be described by a trigonometric function

U0szd = −
DU0

2
cos

2pz

a
, s29d

with the amplitude DU0=250 pN nm and periodicitya
=0.52 nmf8g. Furthermore, we assume that the fluctuations

of the tip coordinate are governed by the overdampedsm
→0d Langevin equations4d with kT=4.04 pN nm sroom
temperatured, h=1 pN msec/nmf13,15g, andû varying be-
tween 0.01 and 1 N/mf8,15g.

To calculate the force-dependent transition ratesvsfd, we
first note that the position of the local potential minimum
corresponding to the force valuef is given byfcf. Eq. s5dg

zmin = − f/û s30d

swe use the sign convention, in whichf .0 and zmin,0d.
The condition that one of the minima of the potentials2d
coincides with −f /û is met not at arbitrary, but at specific
moments of time,tf, which can be found from the require-
ment that the derivative of the total potentials2d ands29d at
z=−f /û and t= tf be zero, i.e., from the equationU08(vtf
−sf /ûd)= f, leading to

tf =
1

v
F f

û
+

a

2p
sin−1S af

pDU0
D + naG . s31d

Here, an integern marking the minimum can be arbitrary in
view of the periodicity of the potentialU0szd. It is a well-
known result from Kramers’ theoryf21g that the transition
rate is given by

vsfd = v0sfde−DUsfd/kT,

v0sfd =
1

2ph
ÎuU9szmin,tfdU9szmax,tfdu, s32d

wherezmax denotes the position of the barrier separating the
current minimumzmin from the next one and

DUsfd = Uszmax,tfd − Uszmin,tfd s33d

is its height.
It thus remains to determine the position of the maximum,

zmax. Although it can be done numerically, such an approach
is rather time consuming, because one needs to search for
zmax at each sampling point of numerical integration of Eq.
s15d or sA2d. Therefore, an analytic approximation forzmax is
desirable. Fortunately, the accuracy of the Kramers’ rates32d
is most crucially influenced by the accuracy of determination

FIG. 2. The functionQsxd appearing in the force-velocity rela-
tion s26d, as calculated numerically from Eq.s27d ssolid lined and
the approximations28d sdashed lined.
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of the barrier heights33d and to a much lesser degree by the
accuracy of determination of its position: since the first de-
rivative of the potential vanishes at its extrema, a first-order
error inzmax will result in only a second-order error inDUsfd
and hence ofvsfd.

To analytically approximatezmax, we focus on that half-
period of the substrate potentialU0szd in Eq. s29d to which
the extremazmin, zmax belong. Within this half-period, the
surface potential can be approximated as

Ũ0szd = asz− z0d − bsz− z0d3/3, s34d

wherez0 szmin,z0,zmaxd is the inflection point. The param-
etersa and b are chosen so as to correctly reproduce the
separationa/2 between the extrema ofU0szd and the barrier
heightDU0. Imposing these two requirements yields

a = 3DU0/a, b = 48DU0/a
3. s35d

Including the elastic energy, we obtain an approximation for
the total potentials2d in the relevant half-period: namely,

Ũszd=Ũ0szd+ûz2/2. It is easily verified by differentiation

that the distance between the two extrema ofŨszd is given by

zmax− zmin = 2Î û2

4b2 +
a + ûz0

b
< 2Î û2

4b2 +
a − f

b
,

s36d

where we further approximatedz0 by zmin=−f /û. This re-
placement does not introduce much of an error provided that
ûsz0−zmind!a, which is consistent with the conditions6d of
validity of the rate description. Equations36d gives us the
desired approximation for the position of the relevant maxi-
mum of the potentialUsz,td.

Having determinedzmax, we calculate the force-dependent
barrier height according to Eq.s33d. As our additional analy-
sis based on the numerical determination ofzmax has shown,
our approximation has a very good accuracy of Kramers’ rate
s32d of about 0.1%.

It should be noted that there exists a force valuef* at
which the potential barrier vanishes:DUsf*d=0. This value
depends on the concrete model potential; for the one given
by Eq. s29d we havef* =pDU0/a fcf. Eq. s31dg. As stated in
the Introduction, the rate description applies when the rel-
evant barrier height is much greater than the thermal energy.
This means that the average upper force at the moment of
transition to the next minimum must satisfy the inequality

DUs f̄ + ûa/2d @ kT. s37d

Typically, the barrier height must be greater than the thermal
energy at least by about a factor of 5. For the model param-
eters chosen below Eq.s29d, this condition holds for such

forces thatf̄ +ûa/2,0.9f* <1.36 nN. Our numerical calcu-
lations were performed only in the force range specified by
this inequality.

Presented in Fig. 3 are the numerical results obtained for
four values of cantilever spring constant,û=0.01,0.1,0.5,
and 1 N/m. It is obvious from Fig. 3 that our approximate
relation s26d ssolid linesd is in excellent agreement with the

results obtained from numerical solution of Eq.s7d scirclesd.
The discrepancy between the two sets of data is only a frac-
tion of a percent. Additionally, we note a good qualitative
agreement with the experimental results reported inf8g, al-
though we have not attempted to perform a quantitative fit-
ting. This agreement worsens at relatively high velocities,
where the experimental curves off8g exhibit plateaus. These
plateaus, however, appear at forces dangerously close tof* ,
where the conditions37d of validity of the rate theory does
not hold. Their nature is discussed in the recent workf15g.

V. RELATION TO THE EXISTING APPROACHES

A description of FFM in terms of occupation probabilities
and transition rates has been introduced some time ago
f4,8–10,13,14g. The expressions relating pulling velocity and
friction force used in Refs.f9,10g and Refs.f4,8,13,14g can
be obtained from our relations26d as limiting cases of small
and large cantilever spring constantsû, respectively.

When the cantilever has a very low stiffness, we have,
from Eq. s26d,

lim
û→0

vs f̄d = avs f̄d. s38d

This expression has been used earlier, e.g., by Heslotet al.
f9g and Bouhacinaet al. f10g. It has a transparent physical
meaning. As a result of a transition from one minimum to the
next, the force experiences a practically instantaneousson
the experimental time scaled drop by the amountûa, which is
a measure of the magnitude of force fluctuations during the
stick-slip motion. If it is much smaller than the average force

itself—i.e., û! f̄ /a—then the transitions occur at approxi-

mately the same frequencyvs f̄d; after each such transition,
the cantilever moves by the distancea.

FIG. 3. Time-averaged lateral force vs pulling velocity, as ob-
tained from the relations26d and the approximations28d ssolid
linesd and numerical solution of the integral equations15d and Eq.
s17d scirclesd. All parameters are the same as in Fig. 1, except for
the cantilever spring constants, which areû=0.01, 0.1, 0.5, and
1 N/m sfrom top to bottomd. Numerical determination of the func-
tion Qsxd from Eq. s27d instead of Eq.s28d yields results indistin-
guishable from the solid lines.
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In the limit of largeû fbut not large enough to render the
combined potentials2d lose its multistable character, so that
the conditions6d still holdsg we have, from Eqs.s26d and
s28d,

vs f̄d =
v2s f̄ + ûa/2d

ûv8s f̄ + ûa/2d
eg, largeû. s39d

It can be verified that the force-velocity relations used pre-
viously in Refs.f4,8,13,14g have the same structuresnote,
however, that these works either present the force-velocity
relation by expressing the average lateral force as a function
of velocity f4,13,14g or as an equation where both force and
velocity appear in both sidesf8gd. In particular, Eq.s39d, as
well as the analogous relations inf4,8,13,14g, predicts an
unphysical divergence of velocity in the soft-cantileversû
→0d limit. The difference between the expressions given in
these works stems from different assumptions about the
functional form ofvsfd. By adopting these assumptions, one
can reduce our equations39d to the respective formulas ob-
tained in these works. However, our relations39d is more
general, because, in contrast to these works, it does not rely
on any specific functional form of the ratevsfd.

It is possible within the present approach to find the pa-
rameter range in which the high-û approximations39d is ap-
plicable. It follows from Eqs.s26d ands28d that for this to be
the case, the argument of the functionQsxd must be much
greater than 1: that is,

v8s f̄ + ûa/2d

vs f̄ + ûa/2d
ûa @ 1. s40d

In the lowest nonvanishing order, the Kramers’ rates32d can
be approximated asvsfd<vs0deaf/2kT, as the distance be-
tween the minimum and maximum is abouta/2. The condi-
tion of validity of the high-û limit s39d is thus seen to be

ûa2/2 @ kT. s41d

Keeping in mind that at room temperaturekT<4 pN nm and
a<0.5 nm, we conclude that Eq.s39d is a good approxima-
tion for û@0.03 N/m. The large-û expressions39d in vari-
ous forms has been used for analysis of experimental data in
f4,8g. Yet its applicability limits have not been discussed so
far in the literature, and therefore the results41d is of imme-
diate relevance to experimental nanofriction.

A further difference between our expressions39d and the
respective formulas inf4,8,13,14g, which is of still greater
importance for the analysis of experimental data, is that the
factoreg is absent in these works. By analyzing the problem
of escape from a metastable potential well under the action
of a steadily increasing force, it can be shownf24,25g that
this difference stems from the fact that we use theaverage

force at the transition,f̄U= f̄ +ûa/2, as an argument, while
the authors off4,8,13,14g work with the most probableforce
fm found from the maximization of the transition probability

−s] /]fdPsf u f̄ Ld. In Refs. f4,8g, the implicit assumption is
made that the most probable force at the transition,fm, is

practically the same as the average forcef̄U, which is deter-

mined experimentally. To evaluate the effect of this assump-
tion on fitting the experimental results inf4,8g, we note the
following. The attempt frequencyv0 in Kramers’ rates32d is
assumed to be a force-independent constant in these works.
With this additional assumption it is obvious that in order to
recover the fitting formulas used inf4,8g from Eq. s39d, one
only needs to absorb the factoreg into v0. Therefore, the
attempt frequencyv0 is overestimated in Refs.f4,8g by a
large factoreg<1.78.

VI. CONCLUSIONS

Based on escape rate theory, we have deduced an approxi-
mate relations26d between pulling velocity and the resulting
time-averaged friction force acting during the stick-slip mo-
tion of an AFM cantilever. The high accuracy of this relation
was verified by comparison with the results obtained from
the numerically calculated force probability distribution. The
analogous relations existing in the literature were shown to
be the low- and high-stiffness limits of our result.

One of the most drastic simplifications made in this work
is that the motion of the cantilever is essentially one-
dimensional, whereas in reality the cantilever tip also moves
in the direction perpendicular to that of pulling. An extension
of the Tomlinson model to the more general two-dimensional
case is treated numerically inf18–20g. The qualitative differ-
ence from the one-dimensional case studied here is that the
cantilever tip has several choices of the next minima to jump
into from the current minimum of the potential. It follows
from Langer’s generalization of Kramers’ theory to many
dimensionsf21g that the tip will follow the path of the “least
resistance” with the highest probability; i.e., it will jump to
that minimum which is separated by the smallest barrier.
Thus, the motion of the tip will no longer proceed along a
straight line, but rather follow a zigzag path. Although this is
still a one-dimensional manifold, the rate of transitions from
one node to the next will vary, whereas it is the same in the
one-dimensional case considered here. However, the model
treated in the present work still applies to the two-
dimensional case when pulling proceeds along such a crys-
tallographic direction that the internode transition rates re-
main the same along the path; e.g., for a square underlying
lattice, these are thek01l and k11l directions. In this sense,
the one-dimensional model studied in this work is a special
case of the more general two-dimensional model, whose de-
velopment is an interesting subject for future research.
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APPENDIX

Relation s15d is not very efficient for numerical imple-
mentation, because the integral kernel on the right-hand side
depends on two argumentsf and fL. This means that forN
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sampling points,N2 evaluations of the kernel are necessary.
To cure this difficulty, we present the distribution function of
the starting forces in the form

Wsfd = vsf + ûadPsf + ûau− `dgsfd, sA1d

with the unknown functiongsfd satisfying the following in-
tegral equation, in which the kernel depends on only one
argumentfL:

gsfd =
1

ûv
E

−`

f+ûa

dfLvsfL + ûadPsfL + ûaufLdgsfLd.

sA2d

It was this equation that we solved iteratively with the inte-
gral evaluated numerically at each iteration step.
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